Rank-Approximate Nearest Neighbor Search:
Retaining Meaning and Speed in High Dimensions

Parikshit Ram, Dongryeol Lee, Hua Ouyang and Alexander G. Gay
Computational Science and Engineering, Georgia Instififeechnology
Atlanta, GA 30332
{p. ram@ dongr yel @c. , houyang@ agr ay@c. }gat ech. edu

Abstract

The long-standing problem of efficient nearest-neighbad)search has ubiqui-
tous applications ranging from astrophysics to MP3 fingatimg to bioinformat-
ics to movie recommendations. As the dimensionality of thiaset increases, ex-
act NN search becomes computationally prohibitjde} ¢) distance-approximate
NN search can provide large speedups but risks losing thaingeaf NN search
present in the ranks (ordering) of the distances. This pppesents a simple,
practical algorithm allowing the user to, for the first tindirectly control the
true accuracy of NN search (in terms of ranks) while stilliaeimg the large
speedups over exact NN. Experiments on high-dimensiorntakdes show that
our algorithm often achieves faster and more accuratetsethiain the best-known
distance-approximate method, with much more stable behavi

1 Introduction

In this paper, we address the problem of nearest-neighbi) @¢arch in large datasets of high
dimensionality. It is used for classificatioh-\IN classifier [1]), categorizing a test point on the ba-
sis of the classes in its close neighborhood. Non-paracgnsity estimation uses NN algorithms
when the bandwidth at any point depends onitfeNN distance (NN kernel density estimation [2]).
NN algorithms are present in and often the main cost of mostlimear dimensionality reduction
techniques (manifold learning [3, 4]) to obtain the neigtitomd of every point which is then pre-
served during the dimension reduction. NN search has exgeapplications in databases [5] and
computer vision for image search Further applications atian machine learning.

Tree data structures such laétrees are used for efficient exact NN search but do not sedterb
than the néave linear search in sufficiently high dimensions. Distaapproximate NN (DANN)
search, introduced to increase the scalability of NN seangproximates the distance to the NN and
any neighbor found within that distance is considered todmod enough”. Numerous techniques
exist to achieve this form of approximation and are fairlglable to higher dimensions under certain
assumptions.

Although the DANN search places bounds on the numericalegatf the distance to NN, in NN
search, distances themselves are not essential; ratherdeeof the distances of the query to the
points in the dataset captures the necessary and suffinfentiation [6, 7]. For example, consider
the two-dimensional datasét, 1), (2,2), (3,3), (4,4), ... with a query at the origin. Appending
non-informative dimensions to each of the reference pgntsluces higher dimensional datasets
ofthe form(1,1,1,1,1,....),(2,2,1,1,1,...),(3,3,1,1,1, ...), (4,4,1,1,1, ...), For afixed dis-
tance approximation, raising the dimension increasesuheer of points for which the distance to
the query (i.e. the origin) satisfies the approximation dbonl However, the ordering (and hence
the ranks) of those distances remains the same. The profrasgzivork rank-approximate nearest-
neighbor(RANN) search, approximates the NN in its rank rather thatsidistance, thereby making
the approximation independent of the distance distrilouéind only dependent on the ordering of
the distances.

This paper is organized as follows: Section 2 describes tistig methods for exact NN and
DANN search and the challenges they face in high dimensiSestion 3 introduces the proposed
approach and provides a practical algorithm using strdtgempling with a tree data structure to
obtain a user-specified level of rank approximation in Eledin NN search. Section 4 reports the
experiments comparing RANN with exact search and DANN. Ikin&ection 5 concludes with
discussion of the road ahead.

2 Related Work

The problem of NN search is formalized as the following:

Problem. Given a dataset C X of size N in a metric spacéX, d) and a query; € X, efficiently
find a pointp € S such that
d(p,q) = mind(r, g). 1)

2.1 Exact Search

The simplest approach dihear searchover S to find the NN is easy to implement, but requires
O(N) computations for a single NN query, making it unscalablenfioderately largeV.

Hashing the dataset into buckets is an efficient techniquiesdales only to very low dimensional
X. Hence data structures are used to answer queries effici@itlary spatial partitioning trees,
like kd-trees [9], ball trees [10] and metric trees [11] utilize thiangular inequality of the distance
metricd (commonly the Euclidean distance metricptoneaway parts of the dataset from the com-
putation and answer queries in expec@@og N) computations [9]. Non-binary cover trees [12]
answer queries in theoretically bound®dlog V) time using the same property under certain mild
assumptions on the dataset.

Finding NNs forO(N) queries would then require at leadt N log N) computations using the
trees. The dual-tree algorithm [13] for NN search also lsudldree on the queries instead of going
through them linearly, hence amortizing the cost of seaxn the queries. This algorithm shows
orders of magnitude improvement in efficiency and is conjext to beO (V) for answeringO(N)
queries using the cover trees [12].

2.2 Nearest Neighbors in High Dimensions

The frontier of research in NN methods is high dimensionabfgms, stemming from common
datasets like images and documents to microarray data.ifutiimensional data poses an inherent
problem for Euclidean NN search as described in the follgutireorem:

Theorem 2.1. [8] Let C be aD-dimensional hypersphere with radius Let A and B be any two
points chosen at random ifi, the distributions ofA and B being independent and uniform over the
interior of C. Letr be the Euclidean distance betwedrand B (r € [0, 2a]). Then the asymptotic
distribution ofr is N (av/2,a?/2D).

This implies that in high dimensions, the Euclidean distasngetween uniformly distributed points
lie in a small range of continuous values. This hypothedilzasthe tree based algorithms perform
no better than linear search since these data structurdd Wwewnable to employ sufficiently tight

bounds in high dimensions. This turns out to be true in pcadti4, 15, 16]. This prompted interest
in approximation of the NN search problem.

2.3 Distance-Approximate Nearest Neighbors
The problem of NN search is relaxed in the following form tokaé more scalable:

Problem. Given a datase$ C X of size N in some metric spacéX,d) and a queryy € X,
efficiently find any poinp’ € S such that

d(p',q) < (1+ ¢)mind(r,q) @)
for a low value ofc € R with high probability.

This approximation can be achieved with-trees, balls trees, and cover trees by modifying the
search algorithm to prune more aggressively. This intredube allowed error while providing
some speedup over the exact algorithm [12]. Another approzadifies the tree data structures to

bound error with just one root-to-leaf traversal of the trie® to eliminatebacktracking Sibling
nodes inkd-trees or ball-trees are modified to share points near thmindaries, formingspill
trees[14]. These obtain significant speed up over the exact methdtie idea ofipproximately
correct (satisfying Eq. 2) NN is further extended to a formulationerdthe(1 + €) bound can be
exceeded with a low probability, thus forming the PAC-NN search algorithms [17]. They pdevi
1-2 orders of magnitude speedup in moderately large datastt suitable: ando.

These methods are still unable to scale to high dimensioaserer, they can be used in combina-
tion with the assumption that high dimensional data aggdeds on a lower dimensional subspace.
There are a number of fast DANN methods that preprocess détarandomized projectionto
reduce dimensionalityHybrid spill trees[14] build spill treeson the randomly projected data to
obtain significant speedupkocality sensitive hashinfd8, 19] hashes the data into a lower dimen-
sional buckets using hash functions which guarantee thas&t points are hashed into the same
bucket with high probability and “farther apart” points drashed into the same bucket with low
probability. This method has significant improvements imrting times over traditional methods in
high dimensional data and is shown to be highly scalable.

However, the DANN methods assume that the distances arédeledived and not concentrated in a
small range. However, for example, if the all pairwise dises are within the range (100.0, 101.00),
any distance approximatian> 0.01 will return an arbitrary point to a NN query. The exact tree-
based algorithms failed to be efficient because many datasebuntered in practice suffered the
same concentration of pairwise distances. Using DANN imsusituation leads to the loss of the
ordering information of the pairwise distances which iseesial for NN search [6]. This is too
large of a loss in accuracy for increased efficiency. In otdeaddress this issue, we propose a
model of approximation for NN search which preserves thermftion present in the ordering of
the distances by controlling the error in the ordering ftesedspective of the dimensionality or the
distribution of the pairwise distances in the dataset. \§e ptovide a scalable algorithm to obtain
this form of approximation.

3 Rank Approximation

To approximate the NN rank, we formulate and relax NN sear¢he following way:

Problem. Given a datases’ C X of size N in a metric spacgX,d) and a queryy € X, let

D = {D,...,Dy} be the set of distances between the query and all the poitite idataseb,
such thatD; = d(rs,q),r; € S,i = 1,...,N. Let D,y be thert" order statistic ofD. Then the

r € S:d(r,q) = D is the NN ofg in S. The rank-approximation of NN search would then be to
efficiently find a pointy’ € S such that

d(p',q) < D(14r) ®3)
with high probability for a given value of € Z*.
RANN search may use any order statistics of the populafiptounded above by the + 7)t"

order statistics, to answer a NN query. Sedransk et.al. p@ide a probability bound for the
sample order statistics bound on the order statistics ofitiwe set.

Theorem 3.1. For a population of sizeV with Y values ordered a¥’;) < Y(5)--- < Y, let
Yy < ye) - < Y be aordered sample of sizedrawn from the population uniformly without
replacement. Foit <t < N and1 < k < mn,

P(y(@sy@)f(tkill)(an,ji)/(ﬁ’). @

1=0
We may find @’ € S satisfying Eg. 3 with high probability by sampling enoughrms{dy, . ..d,}
from D such that for somé < k£ < n, rank error bound, and a success probability
Pd(p',q) = dmw) < Dayny) > . %)
Sample order statistic = 1 minimizes the required number of samples; hence we sutssttie
values ofk = 1 andt = 1 + 7 in Eg. 4 obtaining the following expression which can be cated

in O(7) time
P(d(1)<D(1+T)):Z<N_nlez_l >/(]X> (6)

=0

The required sample size for a particular error- with success probability is computed using
binary search over the rangé + 7, N]. This makes RANN searoB®(n) (since now we only need
to compute the first order statistics of a sample of siggiving O(N/n) speedup.

3.1 Stratified Sampling with a Tree

For a required sample size of we randomly sample points fromS and compute the RANN for a
queryq by going through the sampled set linearly. But for a treetlasilS, parts of the tree would
be pruned away for the quegyduring the tree traversal. Hence we can ignore the randorplsam
from the pruned part of the tree, saving us some more conipuatat

Hence letS be in the form of a binary tree (sayi-tree) rooted afR,.,,;. The root node hasv
points. Let the left and right child haw¥; and N, points respectively. For a random querg X,
the populationD is the set of distances @fto all the N points inR,.,,;. The tree stratifies the
populationD into D; = {Dy3,...,Din,} andD, = {D,1,...,D,n, }, whereD; and D, are the
set of distances af to all the N; and V,. points respectively in the left and right child of the root
nodeR,,,;. The following theorem provides a way to decide how much toga from a particular
node, subsequently providing a lower bound on the numbearaptes required from the unpruned
part of the tree without violating Eq.5

Theorem 3.2. Letn; andn,. be the number of random samples from the stiatand D,. respec-
tively by doing a stratified sampling on the populatibrof sizeN = N; + N,.. Letn samples be
required for Eq.5 to hold in the populatiab for a given value of. Then Eq.5 holds foPb with the
same value ofv with the random samples of sizesandn,. from the random stratd); and D,. of
D respectively ify; + n,. =nandn;: n. = N;: N,.

Proof. Eq. 5 simply requires: uniformly sampled points, i.e. for each distancel/into have

probabilityn/N of inclusion. Forn; + n, = n andn;: n, = N;: N,, we haven; = [(n/N)N;]

and similarlyn,. = [(n/N)N,], and thus samples in bofp, and D, are included at the proper rate.
O

Since the ratio of the sample size to the population size smstants = n/N, Theorem 3.2 is
generalizable to any level of the tree.

3.2 The Algorithm

The proposed algorithm introduces the intended approiimat the unpruned portion of thied-
tree since the pruned part does not add to the computatidreiexact tree based algorithms. The
algorithm starts at the root of the tree. While searchinglierNIN of a query; in a tree, most of
the computation in the traversal involves computing theéadise of the query to any tree node
R (dist_to_node(q, R)). If the current upperbound to the NN distaneé(g)) for the queryq is
greater thanlist_to_node(q, R), the node is traversed and(q) is updated. Otherwise node is
pruned. The computations of distanceqato points in the datasef occurs only whery reaches

a leaf node it cannot prune. The NN candidate in that leaf mpmded using the linear search
(CompuTEBRUTENN subroutine in Fig.2). The traversal of the exact alganith the tree is illus-
trated in Fig.1.

To approximate the computation by sampling, traversal dihnertree is stopped at a node which can
be summarized with a small number of samples (below a cafiedishold Max SAMPLES). This is
illustrated in Fig.1. The value of Mx SAMPLES giving maximum speedup can be obtained by cross-
validation. If a node is summarizable within the desiredelbounds (decided by theABAPPROX
IMATE subroutine in Fig.2), required number of points are samfsted such a node and the nearest
neighbor candidate is computed from among them using lisearch (©MPUTEAPPROXNN sub-
routine of Fig.2).

Single Tree. The search algorithm is presented in Fig.2. The datéigetstored as a binary tree
rooted atR,,.;. The algorithm starts as STARKAPPROXNN(g, S, 7,). During the search, if a
leaf node is reached (since the tree is rarely balancedgxthet NN candidate is computed. In case
a non-leaf node cannot be approximated, the child noderdoske query is always traversed first.
The following theorem proves the correctness of the allgorit

Theorem 3.3. For a queryq and a specified value ef and 7, STRANKAPPROXNN(q, S, 7,)
computes a neighbor i within (1 + 7) rank with probability at least.

ot -. s ® s * & Query point

L] :$. LI] - * e # Points in the dataset §

(o]

-) L - l Exact Alg. Traversal
] . Py

. . X Parts Pruned
Subsample of the node ‘
.\' % Approx. Alg. Traversal
-
o? '. s " e * Hodes of the kd-tree
.. U
- [
[]

B2 AN

R or e
1_/ N '
N

Figure 1: The traversal paths of the exact and the rank-appete algorithm in &d-tree

Proof. By EQ.6, a query requires at leassamples from a dataset of sideto compute a neighbor
within (1 + 7) rank with a probability. Let 8 = (n/N). Let a nodeR contain|R| points. In the
algorithm, sampling occurs when a base case of the recussieached. There are three base cases:

e Case 1 - Exact Pruningf(ub(q) < dist_to_node(q, R)): Then number of points required
to be sampled from the node is at le@8t- |R||. However, since this node is pruned, we
ignore these points. Hence nothing is done in the algorithm.

e Case 2 - Exact ComputationdMPUTEBRUTENN(g, R)): In this subroutine, linear search
is used to find the NN candidate. Hence number of points dgtsampled is|R| >
8- 1R|].

e Case 3 - Approximate Computation @®PUTEAPPROXNN(q, R, 3)): In this subroutine,
exactlys - | R| samples are made and linear search is performed over them.

Let the total number of points effectively sampled fréfbe n’. From the three base cases of the
algorithm, it is confirmed that’ > [3- N'| = n. Hence the algorithm computes a NN witkir+7)
rank with probability at least. O
Dual Tree. The single tree algorithm in Fig.2 can be extended to the ttaalalgorithm in case
of O(N) queries. The dual tree RANN algorithm (DBRRKAPPROXNN(T, S, 7, a)) is given in
Fig.2. The only difference is that for every querg T, the minimum required amount of sampling
is done and the random sampling is done separately for edbk glieries. Even though the queries
do not share samples from the reference set, when a quenohtuequery tree prunes a reference
node, that reference node is pruned for all the queries inghary node simultaneously. This
work-sharing is a key feature of all dual-tree algorithm3][1

4 Experiments and Results

A meaningful value for the rank errar should be relative to the size of the reference dataset
Hence for the experiments, tfié + 7)-RANN is modified to(1 + [e - N])-RANN wherel.0 >

¢ € R*. The Euclidean metric is used in all the experiments. Altiothe value of Mx SAMPLES
for maximum speedup can be obtained by cross-validatiomrérctical purposes, any low value (
20-30) suffices well, and this is what is used in the experisen

4.1 Comparisons with Exact Search

The speedups of the exact dual-tree NN algorithm and theoappate tree-based algorithm over
the linear search algorithm is computed and compared. iBiftdevels of approximations ranging
from 0.001% to 10% are used to show how the speedup increatteinigrease in approximation.

STRANKAPPROXNN(g, S, 7, @)

n < COMPUTESAMPLESIZE (|S], 7,) DTRANKAPPRONN(T' S, 7,)

B n/lS| n <~ COMPUTESAMPLESIZE (|S|, T, o)
R0t < TREE(S) B+ n/|S|
STRANN(Qv RT'()Ot? ﬂ) Rr(mt (—TREHS)
STRANN(q, R, B) Qroot <~ TREET)
if ub(q) > dist_to_node(q, R) then DTRANN(Q 00t Rroots)

if ISLEAF(R) then
ComMPUTEBRUTENN(qg, R)

else if CANAPPROXIMATE(R, ()

then
ComPUTEAPPROXNN (g, R, B)
else
STRANN(g, R, B),
STRANN(q, R", 3)
end if
end if

ComPUTEBRUTENN(q, R)

ub(q) + min(n&i}r{l d(q,r),ub(q))
CoMPUTEBRUTENN(Q, R)

for Vg € Q do
ub(q) + min(mi}r%l d(g;r), ub(q))
re
end for
node_ub(Q) + maxub(q)
q€Q

CoMPUTEAPPROXNN(q, R,)

R+ [B-|R|] samples fronR
CoMPUTEBRUTENN(q, R’)

ComPUTEAPPROXNN(Q, R, 5)

DTRANN(Q, R, B)

if node_ub(Q) >
dist_between_nodes(Q, R) then

if ISLEAF(Q) && | SLEAF(R) then
CoMPUTEBRUTENN(Q, R)

else ifISLEAF(R) then
DTRANN(Q', R, 3), DTRANN(Q", R,)
node_ub(Q) + _H}EZLX} node_ub(Q?)

else ifCANAPPROXIMATE(R, /3) then
if ISLEAF(Q) then
CoMpPUTEAPPROXNN (Q, R,)
else
DTRANN(Q!, R,),
DTRANN(Q", R,)
node_ub(Q) + max_node_ub(Q")

i={l,r

end if
else ifISLEAF(Q) then

DTRANN(Q, R, 3), DTRANN(Q, R",)
else

DTRANN(Q', R', 3), DTRANN(Q', R", j3)

DTRANN(Q", R,),

DTRANN(Q", R", 3)

node_ub(Q) + 4mflaux} node_ub(Q")

={l,r

for Vg € Q do end if

R’ + [B-|R|] samples fronR end if

CoMPUTEBRUTENN(q, R’) CANAPPROXIMATER, f3)
end for return [3 - |R|] <MAXSAMPLES
node_ub(Q) + max ub(q)

q€Q

Figure 2: Single tree (STRAKAPPROXNN) and dual tree (DTRNK APPROXNN) algorithms and
subroutines for RANN search for a queryor a query sef’) in a datasef with rank approximation
7 and success probability. R' andR" are the closer and farther child respectivelyfofrom the

queryq (or a query nodeé))

Different datasets drawn for the UCI repository (Bio data®@0kx 74, Corel dataset 40k32,
Covertype dataset 60865, Phy dataset 156k78)[21], MNisT handwritten digit recognition
dataset (60k 784)[22] and the Isomap “images” dataset (¥@@96)[3] are used. The final dataset
“urand” is a synthetic dataset of points uniform randomignpéed from a unit ball (1 20). This
dataset is used to show that even in the absence of a lowendional subspace, RANN is able to
get significant speedups over exact methods for relatieslydrrors. For each dataset, the NN of
every point in the dataset is found in the exact case(&and ¢ - N'|)-rank-approximate NN of every
point in the dataset is found in the approximate case. Thessdts are summarized in Fig.3.

The results show that for even low valueseothigh accuracy setting), the RANN algorithm is
significantly more scalable than the exact algorithms fbthal datasets. Note that for some of the
datasets, the low values of approximation used in the exjeris are equivalent to zero rank error
(which is the exact case), hence are equally efficient asddet algorithm.

6

£=0%(exact),0.001%,0.01%,0.1%,1%,10%

a=0.95
10" | .
<
S 10° | .
©
()
(%]
3
(]
£
g 10° | .
o
o
o}
e}
(]
g
? 10" } .
10° | .
bio corel covtype images mnist phy urand

Figure 3: Speedups(logscale on the Y-axis) over the linemrch algorithm while find-
ing the NN in the exact case ofl + N)-RANN in the approximate case with =
0.001%,0.01%,0.1%, 1.0%, 10.0% and a fixed success probability = 0.95 for every point in
the dataset. The first(white) bar in each dataset in the X-mxthe speedup of exact dual tree
NN algorithm, and the subsequent(dark) bars are the speaifithe approximate algorithm with
increasing approximation.

4.2 Comparison with Distance-Approximate Search

In the case of the different forms of approximation, the agerrank errors and the maximum rank
errors achieved in comparable retrieval times are consitliar comparison. The rank errors are
compared since any method with relatively lower rank errdr @bviously have relatively lower
distance error. For DANN, Locality Sensitive Hashing (LgH9, 18] is used.

Subsets of two datasets known to have a lower-dimensioria¢@ding are used for this experiment
- Layout Histogram (10k30)[21] and MNST dataset (10k 784)[22]. The approximate NN of
every point in the dataset is found with different levels ppeoximation for both the algorithms.
The average rank error and maximum rank error is computeedoin of the approximation levels.
For our algorithm, we increased the rank error and obsereedrasponding decrease in the retrieval
time. LSH has three parameters. To obtain the best rettiievas with low rank error, we fixed one
parameter and changed the other two to obtain a decreassiimeuand did this for many values of
the first parameter. The results are summarized in Fig. 4 andF

The results show that even in the presence of a lower-dimeakembedding of the data, the rank
errors for a given retrieval time are comparable in both phraximate algorithms. The advantage
of the rank-approximate algorithm is that the rank errorleanlirectly controlled, whereas in LSH,
tweaking in the cross-product of its three parameters is&ly required to obtain the best ranks for
a particular retrieval time. Another advantage of the tsased algorithm for RANN is the fact that
even though the maximum error is bounded only with a proligtihe actual maximum error is not
much worse than the allowed maximum rank error since a tregad. In the case of LSH, at times,
the actual maximum rank error is extremely large, corredpanto LSH returning points which
are very far from being the NN. This makes the proposed dlgorfor RANN much more stable

Random Sample of size 10000 Random Sample of size 10000
T T T T 10 T T T T T T

RANN RANN
- LsH 9 . LsH |4

IS

w
w o

N
2

I
2

Time (in sec.)
Time (in sec.)

.
-
[

o

500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500 4000
Average Rank Error Average Rank Error

o

(a) Layout Histogram (b) Mnist

Figure 4: Query times on the X-axis and the Average Rank Emdhe Y-axis.

Random Sample of size 10000
T T T T T T T T 10

RANN
+ LSH of

Random Sample of size 10000

RANN
¢ LSH |4

S 25l 5
ol & of
2] 2]
E of* - E s
.
[0} : [}
£ *1 £ 4 .
": '. ': .
: af 3
LI . . 34 ’
A
.
00 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 00 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Maximum Rank Error Maximum Rank Error
(a) Layout Histogram (b) Mnist

Figure 5: Query times on the X-axis and the Maximum Rank Esrothe Y-axis.

than LSH for Euclidean NN search. Of course, the reportedgihighly depend on implementation
details and optimization tricks, and should be consideeadfally.

5 Conclusion

We have proposed a new form of approximate algorithm for alakte NN search instances by con-
trolling the true error of NN search (i.e. the ranks). Thiswabk approximate NN search to retain
meaning in high dimensional datasets even in the absenctoaea-dimensional embedding. The
proposed algorithm for approximate Euclidean NN has beewsto scale much better than the
exact algorithm even for low levels of approximation everewlthe true dimension of the data is
relatively high. When compared with the popular DANN methb8H), it is shown to be compara-
bly efficient in terms of the average rank error even in thesg@nee of a lower dimensional subspace
of the data (a fact which is crucial for the performance ofdtstance-approximate method). More-
over, the use of spatial-partitioning tree in the algorigimovides stability to the method by clamping
the actual maximum error to be within a reasonable rank timidaunlike the distance-approximate
method.

However, note that the proposed algorithm still benefitmftbe ability of the underlying tree data
structure to bound distances. Therefore, our method Isstilnecessarily immune to the curse of
dimensionality. Regardless, RANN provides a new paradigniNiN search which is comparably
efficient to the existing methods of distance-approximatod allows the user to directly control
the true accuracy which is present in ordering of the neighbo

References

[1] T. Hastie, R. Tibshirani, and J. H. Friedmarmlhe Elements of Statistical Learning: Data
Mining, Inference, and PredictiorSpringer, 2001.

[2] B. W. Silverman.Density Estimation for Statistics and Data Analysthapman & Hall/CRC,
1986.

[3] J. B. Tenenbaum, V. Silva, and J.C. Langford. A Global @etric Framework for Nonlinear
Dimensionality ReductionScience290(5500):2319-2323, 2000.

[4] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Retion by Locally Linear Embed-
ding. Science290(5500):2323-2326, December 2000.

[5] A. N. Papadopoulos and Y. Manolopouldgearest Neighbor Search: A Database Perspective
Springer, 2005.

[6] N. Alon, M. Badoiu, E. D. Demaine, M. Farach-Colton, and M. T. Hajiagh&@rdinal Em-
beddings of Minimum Relaxation: General Properties, Trand Ultrametrics. 2008.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. iMse'Nearest Neighbor” Mean-
ingful? LECTURE NOTES IN COMPUTER SCIENGfages 217-235, 1999.

[8] J. M. Hammersley. The Distribution of Distance in a Hygehere. Annals of Mathematical
Statistics 21:447-452, 1950.

[9] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An Algdit for Finding Best Matches in
Logarithmic Expected TimeACM Trans. Math. Softw3(3):209-226, September 1977.

[10] S. M. Omohundro. Five Balltree Construction Algoritam Technical Report TR-89-063,
International Computer Science Institute, December 1989.

[11] F. P. Preparata and M. I. Sham@omputational Geometry: An Introductio®pringer, 1985.

[12] A.Beygelzimer, S. Kakade, and J.C. Langford. Covee$ier Nearest NeighboProceedings
of the 23rd international conference on Machine learnipgges 97-104, 2006.

[13] A. G. Gray and A. W. Moore. N-Body' Problems in Statistical Learning. MIPS volume 4,
pages 521-527, 2000.

[14] T. Liu, A. W. Moore, A. G. Gray, and K. Yang. An Investigan of Practical Approximate
Nearest Neighbor Algorithms. IAdvances in Neural Information Processing Systems 17
pages 825-832, 2005.

[15] L. Cayton. Fast Nearest Neighbor Retrieval for BregarergencesProceedings of the 25th
international conference on Machine learnjqgages 112-119, 2008.

[16] T. Liu, A. W. Moore, and A. G. Gray. Efficient Exact k-NN dMNonparametric Classification
in High Dimensions. 2004.

[17] P.Ciaccia and M. Patella. PAC Nearest Neighbor QueAggroximate and Controlled Search
in High-dimensional and Metric spaceBata Engineering, 2000. Proceedings. 16th Interna-
tional Conference arpages 244-255, 2000.

[18] A. Gionis, P. Indyk, and R. Motwani. Similarity Searam High Dimensions via Hashing.
pages 518-529, 1999.

[19] P. Indyk and R. Motwani. Approximate Nearest Neighbdi@wards Removing the Curse of
Dimensionality. INSTOG pages 604-613, 1998.

[20] J. Sedransk and J. Meyer. Confidence Intervals for then@les of a Finite Population: Simple
Random and Stratified Simple Random samplipurnal of the Royal Statistical Society
pages 239-252, 1978.

[21] C. L. Blake and C. J. Merz. UCI Machine Learning Repasitdittp://archive.ics.uci.edu/ml/,
1998.

[22] Y. LeCun. MNIST dataset, 2000. http://yann.lecun.com/exdb/mnist/.

